
Nordic Collegiate Programming Contest
NCPC 2024

October 5, 2024

Problems
A Avoiding the Abyss
B Baseball Court
C Composed Rhythms
D Double Deck
E Elapid Errands
F Fence Fee
G Guessing Passwords
H Hotfix
I Infinite Cash
J Jungle Game
K Knitting Pattern

Do not open before the contest has started.



Advice, hints, and general information

• The problems are not sorted by difficulty.

• Your solution programs must read input from standard input (e.g. System.in in Java or
cin in C++) and write output to standard output (e.g. System.out in Java or cout
in C++). For further details and examples, please refer to the documentation in the help
pages for your favorite language on Kattis.

• For information about which compiler flags and versions are used, please refer to the
documentation in the help pages for your favorite language on Kattis.

• Your submissions will be run multiple times, on several different inputs. If your submission
is incorrect, the error message you get will be the error exhibited on the first input on which
you failed. E.g., if your instance is prone to crash but also incorrect, your submission
may be judged as either “Wrong Answer” or “Run Time Error”, depending on which is
discovered first. The inputs for a problem will always be tested in the same order.

• If you think some problem is ambiguous or underspecified, you may ask the judges for a
clarification request through the Kattis system. The most likely response is “No comment,
read problem statement”, indicating that the answer can be deduced by carefully reading
the problem statement or by checking the sample test cases given in the problem, or that
the answer to the question is simply irrelevant to solving the problem.

• In general we are lenient with small formatting errors in the output, in particular whitespace
errors within reason, and upper/lower case errors are often (but not always) ignored. But
not printing any spaces at all (e.g. missing the space in the string “1 2” so that it becomes
“12”) is typically not accepted. The safest way to get accepted is to follow the output
format exactly.

• For problems with floating point output, we only require that your output is correct up to
some error tolerance. For example, if the problem requires the output to be within either
absolute or relative error of 10−4, this means that

– If the correct answer is 0.05, any answer between 0.0499 and .0501 will be accepted.

– If the correct answer is 500, any answer between 499.95 and 500.05 will be accepted.

Any reasonable format for floating point numbers is acceptable. For instance, “17.000000”,
“0.17e2”, and “17” are all acceptable ways of formatting the number 17. For the definition
of reasonable, please use your common sense.



Problem A
Avoiding the Abyss

This picture represents sample 1. The
path taken avoids the hidden pool,

but based on the information given it
could also have intersected it. So the
sample solution was quite lucky here.

You are standing on a point with integer coordinates (xs, ys). You
want to walk to the point with integer coordinates (xt, yt). To do this, you
can walk along a sequence of line segments. But there is a swimming
pool in your way. The swimming pool is an axis aligned rectangle whose
lower left corner is on the point (xl, yl) and the upper right corner is on the
point (xr, yr). You cannot ever cross the swimming pool, not even on the
border. However, it is dark and you do not know the coordinates (xl, yl)
and (xr, yr). Instead, you threw a rock into the pool which revealed that
the point (xp, yp) is in the pool (or on the boundary).

Find a way to walk from the start to the end point along a sequence of line segments, so that
you never cross the swimming pool.

Input

The first line contains two integers xs and ys (−104 ≤ xs, ys ≤ 104).
The second line contains two integers xt and yt (−104 ≤ xt, yt ≤ 104).
The third line contains two integers xp and yp (−104 ≤ xp, yp ≤ 104).
The problem is not adaptive, i.e. for every test case there exist four integers xl, yl, xr, yr

(−104 ≤ xl < xr ≤ 104, −104 ≤ yl < yr ≤ 104) that constitute a swimming pool. The start
and end points are always strictly outside the swimming pool, and the point (xp, yp) is inside (or
on the border). The start and end points are always distinct.

Output

First, print one integer N (0 ≤ N ≤ 10), the number of points in between the start and end
point that you want to visit. Then, print N lines, the ith containing two integers xi, yi. These
coordinates must satisfy −109 ≤ xi, yi ≤ 109. Note that these are not the same bounds than on
the other coordinates.

This means that you will walk along straight line segments between (xs, ys), (x1, y1), . . . , (xN , yN), (xt, yt)
such that none of the line segments touch the swimming pool. It can be proven that a solution
always exists.

Sample Input 1 Sample Output 1

0 0
4 4
2 2

2
0 3
1 4

NCPC 2024 Problem A: Avoiding the Abyss 1



This page is intentionally left blank.



Problem B
Baseball Court

Image taken from commons.wikimedia.org.

After lengthy meetings on the subject, the
NCPC jury has decided that getting the con-
testants’ blood pumping would result in better
contests. Thus they figured it would be a good
idea to compete for bragging rights in some
kind of sport prior to the programming contest.
For this they need some place to compete and
to pick a sport to compete in. One of those is
solved easily by drawing at random from a hat,
which results in the chosen sport being base-
ball. That simply leaves the matter of making
a suitable court to play on. The NCPC jury
has access to a rectangular plot of land a by b meters in size. Furthermore, they have N square
tiles of grass they can place on this plot to create the court. All grass tiles must be placed with
their sides parallel to the edges of the plot.

The south-west corner of the land is chosen to be the batting point. For the placement of
the grass tiles to constitute a valid court, two conditions must be met. Firstly, for any given
tile the south and west sides must either lay directly against the edge of the plot or directly
against another tile. This is required to make sure the ball doesn’t exit and reenter the court
while following a straight trajectory. Secondly, all tiles which have no adjacent tile to the north
nor to the east must have the same manhattan distance from the batting point. This is to prevent
batters from preferring some directions over others.

Your task is to find the number of ways to place the tiles so that it creates a valid baseball
court.

Input
The first line of the input contains a single positive integer N (1 ≤ N ≤ 104), the number
of grass tiles available. The second line of the input contains two positive integers a and b
(1 ≤ a, b ≤ 104), the size of the land the court can be made within.

Output
Print the number of valid ways to place the grass tiles to make up a baseball court. All n grass
tiles must be used. Since this number might be very large, print the answer modulo 109 + 7.

Sample Input 1 Sample Output 1

15
3 8

3

Sample Input 2 Sample Output 2

15
3 5

1

NCPC 2024 Problem B: Baseball Court 3

https://commons.wikimedia.org/wiki/File:Baseball_diamond_marines.jpg


Sample Input 3 Sample Output 3

15
3 4

0

NCPC 2024 Problem B: Baseball Court 4



Problem C
Composed Rhythms

Image by Gunnlaugur Arnarson

Rhythm is an important part of music and
it is crucial for aspiring musicians to gain un-
derstanding of it. As the skill of the musician
advances, more complex rhythms are intro-
duced to them. To ease the learning of musi-
cal passages, a method of simplifying rhythms
can be helpful. One method is to reduce the
rhythm into groups of twos and threes.

A rhythm is composed of multiple beats. A single beat does not make up a rhythm, as
the beats depend on each other. The rhythm can be subdivided into smaller components. For
example, a rhythm of 7 beats can be subdivided into 4 beats and 3 beats, or alternatively into 2,
3, and 2 beats. However, a rhythm of 7 beats cannot be subdivided into 1, 3, and 3 beats, since
one of the components does not form a rhythm.

This leaves 2 as the smallest group size of beats we can use to decompose a rhythm, but if
we only use groups of size 2 then we cannot have an odd number of beats. Adding 3 as a group
size allows us to decompose any rhythm, even if it has an odd number of beats.

Given the number of beats in a rhythm, provide one decomposition of the rhythm into groups
of sizes 2 and 3.

Input
The first and only line of input contains a single integer N (2 ≤ N ≤ 106), denoting the number
of beats in the rhythm.

Output
First output one line with an integer K, the number of groups of which your decomposition
consists. Then output a line with K space-separated integers, each of which is a 2 or a 3. Your
decomposition must be made up of the correct number of beats.

If there are multiple correct answers, you may output any of them.

Sample Input 1 Sample Output 1

25 9
3 3 3 3 3 3 2 2 3

NCPC 2024 Problem C: Composed Rhythms 5



This page is intentionally left blank.



Problem D
Double Deck

Image taken from wikimedia.org.

You are playing a new card game. In the game you have two
decks of cards each consisting of N · K cards labeled with an
integer from 1 to N , inclusive. Also, each type of card appears
precisely K times in each deck.

The rules of the game are simple. You shuffle both decks
and place them face up in front of you, so at each point in time
you see the top card in each deck. If the top cards are the same
you can take them both and get one point. Otherwise you must
discard either card. Your goal is to get as many points as possible.

You have just finished playing a round of this game and you want to know what the maximum
score was, knowing the layout of both decks.

Input
The first line of the input contains two integers N and K (1 ≤ N ≤ 104, 1 ≤ K ≤ 15). The
second and third line of the input each contain N ·K integers xi (1 ≤ xi ≤ N ), describing the
layout of the decks. The first number x1 is the topmost card in the deck, x2 is the second, and so
on.

No integer in the second line and third line is repeated more than K times per line.

Output
Print a single integer, the maximum possible score.

Sample Input 1 Sample Output 1

3 2
3 1 2 3 1 2
2 1 3 1 3 2

4

Sample Input 2 Sample Output 2

5 3
2 3 4 5 3 5 2 2 4 3 5 1 1 1 4
5 2 3 2 3 1 4 5 1 4 5 1 4 3 2

8

NCPC 2024 Problem D: Double Deck 7

https://commons.wikimedia.org/wiki/File:7_playing_cards.jpg


This page is intentionally left blank.



Problem E
Elapid Errands

The journey of the snake in the sample.

Carl the snake is in his burrow at the point (0, 0) in an infinite
plane. He wants to visit the points (x1, y1), (x2, y2), . . . , (xN , yN).
These points must be visited in the order they are given, and Carl must
end up at the point (xN , yN). In one move, he can move one step up,
down, left, or right. However, since he is a very long snake, he can
never visit the same point more than once.

Your task is to find a sequence of moves such that Carl visits all
the points in order, and never visits any point more than once. The
points (xi, yi) were generated uniformly at random.

Input
The first line contains one integer N (1 ≤ N ≤ 20), the number of
points you must visit.

The following N lines each contain two integers xi, yi (0 ≤ xi, yi ≤ 104).
Apart from the sample, there will be 100 testcases, all with N = 20. The (manhattan)

distance between any two of the points (including the starting point (0, 0)) will be at least 20.
Within these constraints, the points (xi, yi) were generated uniformly at random.

Note that the sample does not satisfy the distance requirement. Your solution does not need
to solve the sample to get accepted.

Output
Print a string consisting of the characters ‘<’, ‘>’, ‘^’, ‘v’. This is the list of moves you should
make so that you visit all the points in order without ever going to the same point more than
once. The string must have length at most 2 · 106.

Sample Input 1 Sample Output 1

2
0 10
5 0

^^^^^^^^^^>>vvv>v>vvv<vvv>>

NCPC 2024 Problem E: Elapid Errands 9



This page is intentionally left blank.



Problem F
Fence Fee

Generated from OpenStreetMap, ODBL 1.0

The National Crop Protection Commission (NCPC) is dedi-
cated to supporting local farmers by offering subsidies that are
proportional to the area of their crop fields. Each farmer can
have several crop fields, each uniquely shaped but geometrically
defined as a polygon, bounded by fences that meet only at the
corners.

In a classic display of political bureaucracy, and to incentivize
well-shaped fields, the NCPC will subsidize each crop field based
on the square of its area. This, to reward well-encapsulated fields.
They now require a tool that calculates the sum of the squared
areas of these polygons to ensure that the subsidies are distributed
fairly.

Input
The first line contains an integer F (3 ≤ F ≤ 1000), the number of fence line segments. The
next F lines contain four integers each, x1, y1, x2, y2 (0 ≤ x1, y1, x2, y2 ≤ 1000), representing a
straight-line fence section.

No two fence line segments intersect. Since fencing is both expensive and tedious, you may
assume that every fence line segment is necessary and serves to bound fields. All fences farmers
have are connected.

In other words, the graph that consists of endpoints and fences is planar, connected, and has
no bridges.

Output
Output a single line representing the sum of the squared areas of all the fields formed by the
given fence sections. Your answer will be correct if it has an absolute or relative error of at most
10−6.

Explanation of sample
The picture represents sample 2. The areas of the two fields are 1 and 0.5, so the sum of their
squares is 1 + 0.25 = 1.25.

NCPC 2024 Problem F: Fence Fee 11



Sample Input 1 Sample Output 1

5
0 0 0 1
0 1 1 1
0 0 1 0
1 0 2 0
1 1 2 0

2.25

Sample Input 2 Sample Output 2

6
0 0 0 1
0 1 1 1
0 0 1 0
1 0 2 0
1 1 2 0
1 0 1 1

1.25

NCPC 2024 Problem F: Fence Fee 12



Problem G
Guessing Passwords

Image taken from commons.wikimedia.org.

Ingfríður is testing her new pet project
website, Passwordle. The rules should be
rather familiar for those who have played
plenty of wordle, but let us review them here.
The website picks a secret password that the
user then has to guess. The password will be
N characters in length and the user will guess
until they get it right, getting a higher score for
fewer guesses. Each guess must be a string of
N characters. For each character in the guess,
it will be coloured one of three colours. If that
character matches the password character in
the same position, the colour is green. If the
character does not match, but that character is
in the password somewhere else, the colour is yellow. Otherwise it is gray.

Ingfríður is of course very good at her own game, so she will always guess a password that
could be the hidden password. That is to say her guess will always match the previous clues.
Furthermore she knows her program never generates passwords with repeated characters, since
that’s insecure, and will incorporate this knowledge into her guesses.

You now receive some screenshots from her testing progress, but they got so terribly
compressed you can only make out the colours and not the text itself. Furthermore it seems that
she didn’t manage to make any progress at all. She didn’t get a single green square in the entire
game and never found any more characters than she did in her very first guess, and quit out of
frustration. So the number of yellow squares is the same on each row. Given this info, can you
reconstruct a sequence of guesses she could have made? Or is it impossible and her program
must be wrong? You may assume that Ingfríður never makes any mistake when playing, only
when programming.

Input
The first line of the input contains two positive integers N and M (1 ≤ N,M ≤ 100). N is
the number of characters in the password and M is the number of guesses in the screenshot.
Next there are N lines, each with M characters, the i-th of which gives the colours of the i-th
guess. G denotes gray and Y denotes yellow. The number of Ys is constant across all lines. The
characters are given without spaces between them. Finally there is a single line with a single
positive integer Σ (1 ≤ Σ ≤ 106), giving the number of valid characters for the passwords.

Output
If there is no way to achieve the given colours print Bugged!. Otherwise print N + 1 lines
with M numbers each, separated by spaces. The first N lines should give the colouring in the
input if the number i denotes the i-th character in the alphabet. The final and (N + 1)-st line
should give a secret word that could have resulted in this sequence of guesses being valid. If
there are multiple possible solutions any one of them will be accepted.

NCPC 2024 Problem G: Guessing Passwords 13

https://commons.wikimedia.org/wiki/File:Wordle_Emoji_Screenshot.png


Explanation of sample
In the first sample, there is a valid sequence of guesses. In the first move, Ingfríður guesses the
word 3 4 2 1, which reveals that the 1 and the 2 are somewhere in the hidden password but
not at those positions. The next guess is 1 5 6 2 which is a valid second guess since it could
have been the password, given the information from the first guess. An example of an invalid
second guess would be 1 3 2 5. This is invalid because Ingfríður already knows that the 2 is
not on the third position, and that the 3 shouldn’t occur in the word at all.

Sample Input 1 Sample Output 1

3 4
GGYY
YGGY
GYYG
26

3 4 2 1
1 5 6 2
7 2 1 8
2 1 9 10

Sample Input 2 Sample Output 2

4 5
GYGGY
YGYGG
GGYYG
GYGGY
16

Bugged!

NCPC 2024 Problem G: Guessing Passwords 14



Problem H
Hotfix

Image taken from commons.wikimedia.org.

In an earlier contest, contestants had to solve a sim-
ple problem. They were given a string and had to print
each unique substring of it, along with the number of
occurrences it had in the original string. For example
AB would print A 1 B 1 AB 1 and AAA would print
A 3 AA 2 AAA 1.

When copying over this problem for reuse in this
contest, several mistakes were made. The input con-
straints were changed significantly, making the problem
absolutely impossible! Luckily this was partially can-
celled out by the output validator being mangled as well. Now instead of checking for absolute
correctness it only requires the number of occurrences of each character in the output to be
correct. With a quick hotfix of applying run length encoding to the output, the problem was
finally solvable again and the contest could continue on as planned. Right?

Input
The input contains a single string of length at least 1 and at most 106. It contains only ASCII
upper and lower case characters. This string is then followed by a single newline character.

Output
For each non-whitespace character that appears a non-zero number of times in the output of
the problem described above, print it along with its number of occurrences on a single line,
separated by a space. Print the lines ordered by ascending values of the ASCII characters.

Sample Input 1 Sample Output 1

ABC 1 6
A 3
B 4
C 3

Sample Input 2 Sample Output 2

aaaab 1 6
2 1
3 1
4 1
a 20
b 5

NCPC 2024 Problem H: Hotfix 15

https://commons.wikimedia.org/wiki/File:ISS_laptop_hard_drive_failure_error_message.jpg


This page is intentionally left blank.



Problem I
Infinite Cash

Image taken from flickr.com.

Svalur Handsome has finally graduated with a de-
gree in computer science, and it couldn’t have happened
sooner. He has some rather unwise spending habits
which he hopes will be more sustainable now that he
can get a high paying job as a programmer. He has
applied to a few places, and now has a contract in his
hands that he could sign and start working almost im-
mediately. But before he takes the offer he wants to figure out how long it could support his
spending habits.

At the start of every day Svalur spends half of his remaining money, rounded up. The new
job would pay s ISK at the end of every d-th day, starting with the d-th day. He currently has m
ISK to spend as well.

Input
The input has three lines, each containing the positive integers s, d,m respectively. They satisfy
1 ≤ s, d,m ≤ 21000. As these payment details are for a computer science job the numbers are
all given in binary, naturally.

Output
Print the number of the day that Svalur wants to spend money, but has none. This should
naturally also be printed in binary. If he can support his spending habits indefinitely instead
print Infinite money!.

Sample Input 1 Sample Output 1

101110101
1010
10001110101010101

10011

Sample Input 2 Sample Output 2

101110101
1000
100011101

Infinite money!

Sample Input 3 Sample Output 3

101110101
1010
100011101

1001

NCPC 2024 Problem I: Infinite Cash 17

https://www.flickr.com/photos/famzoo/4880265002


This page is intentionally left blank.



Problem J
Jungle Game

Rainforest, public domain

Denise is designing a rainforest themed board game. The goal
of the game is for each player to form a team of two characters and
complete various challenges.

There are N different characters numbered from 1 to N . Each
character i has two attributes pi and si (problem solving skill and
strength). The numbers pi and si are positive integers satisfying
1 ≤ pi, si ≤ N . Before the game starts, each player will pick two
characters i and j to form a team. It is possible to pick two copies of the same character. The
total problem solving skill and strength of the team will be pi + pj and si + sj respectively.

In the game there are also N challenge cards numbered from 1 to N . Each of these also
has two attributes Pk and Sk. Denise has already designed the challenge cards and decided on
the values of all numbers P1, P2, . . . , PN and S1, S2, . . . , SN . However, the rules of the game
assume that it is not possible for a player to form a team whose problem solving skill and
strength are both the same as one of the challenge cards. In other words, the situation

pi + pj = Pk and si + sj = Sk

should never occur for any triple i, j, k (note that i can be equal to j).
The only thing left to do is to decide the N distinct pairs (p1, s1), (p2, s2) . . . , (pN , sN) such

that 1 ≤ pi, si ≤ N and the situation above never happens.

Input
The first line contains the integer N (1 ≤ N ≤ 2000).

The following N lines contain the values of the challenge cards Pi, Si (2 ≤ Pi, Si ≤ 2 ·N ).

Output
If there is no solution, print “NO”. Otherwise, print “YES” followed by N lines, each containing
a pair of integers pi, si (1 ≤ pi, si ≤ N ). These pairs of integers must be distinct. In other words,
you may not have two indices i 6= j with pi = pj and si = sj .

Sample Input 1 Sample Output 1

5
5 5
5 6
6 5
6 6
8 8

YES
2 2
1 1
1 2
2 1
1 3

Sample Input 2 Sample Output 2

1
2 2

NO

NCPC 2024 Problem J: Jungle Game 19

https://commons.wikimedia.org/wiki/File:Chiapas_Rainforest.jpg


This page is intentionally left blank.



Problem K
Knitting Pattern

Image by Linn Bryhn Jacobsen, from commons.wikimedia.org

Jörmunrekur had found himself with some
extra time on his hands, so he decided to try to
find a new hobby. After discussing this with
some of his relatives, his grandparents lent
him a book with knitting guides and knitting
patterns.

He wants to start with something big, so
he decides to make a sweater. He has also
picked out a pattern from the book that he
will repeat around the circumference of the
sweater. He wants the pattern to be centered
and then repeat out towards the back in either
direction, but never wants to have less than
the full pattern on the sweater. He will not
place any patterns that leaves the placements
of patterns asymmetric. Now he has to know
how much empty space he should leave at the
back of the sweater to achieve this.

The empty space that is not covered by
the patterns must be a contiguous (possibly
empty) section at the back of the sweater.

Input
The input contains two positive integers N , the length of the sweater, and P , the length of the
pattern. They satisfy 1 ≤ P ≤ N ≤ 1018 and they have the same parity, as otherwise the pattern
could never be perfectly centered.

Output
Print a single integer, the amount of empty space left on the back of the sweater.

NCPC 2024 Problem K: Knitting Pattern 21

https://commons.wikimedia.org/wiki/File:H%C3%B8nsestrikk.jpg#mw-jump-to-license


Explanation of samples
In the first sample the sweater is 13 loops in circumference. Thus the centered pattern is placed
at loops 6, 7 and 8. There’s space for another pattern in either direction at loops 3, 4, 5 and 9,
10, 11. There’s not enough space to place two more, and a single pattern would make things
asymmetric. Thus loops 1, 2, 12 and 13 are empty, so the answer is 4.

Figure K.1: A possible pattern for sample 1

Figure K.2: Applying the pattern to the full width for sample 1

In the second sample the sweater is 16 loops in circumference. The first pattern is placed
at loops 7, 8, 9 and 10. Two more are placed at 3, 4, 5, 6 and 11, 12, 13, 14. This leaves 1, 2,
15 and 16, which exactly fits one more pattern that will be perfectly centered at the back of the
sweater, creating no asymmetry. Thus that pattern is placed, leaving no empty space.

Figure K.3: A possible pattern for sample 2

Figure K.4: Applying the pattern to the full width for sample 2

Sample Input 1 Sample Output 1

13 3 4

Sample Input 2 Sample Output 2

16 4 0

NCPC 2024 Problem K: Knitting Pattern 22


